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1. Generation of IBD locus list

1a. GWAS data and analysis

i. Cohorts and samples

Seven Crohn’s disease collections and eight ulcerative colitis collections with
genome-wide SNP genotype data were used in this analysis (Supplementary Table 1,
tab 1). The CD cohorts contained a total of 6299 cases and 15148 controls, and the
UC cohorts contained a total of 7211 cases and 20783 controls (the control sets
contain largely overlapping samples). Four different chips were used: two produced
by Affymetrix (the GeneChip Human Mapping 500K Array and the Genome-Wide
Human SNP Array 6.0) and two produced by Illumina (the HumanHap300 BeadChip
and the HumanHap550 BeadChip). The majority of these samples were incorporated
into our previous meta-analyses using summary statistics only' .

ii. QC and imputation

Technical quality control was performed on genotypes generated by various GWAS
platforms, with quality control conducted on each dataset separately using a common
approach. In addition to previously reported QC on each dataset, the following quality
control parameters were applied: (i) missing rate per SNP < 0.05 (before sample
removal below), (i1) missing rate per individual < 0.02, (iii) heterozygosity per
individual +/- 0.2, (iv) missing rate per SNP < 0.02 (after sample removal above), (iv)
missing rate per SNP difference in cases and controls < 0.02, (vi) Hardy-Weinberg
equilibrium (controls) P < 10, (vii) Hardy-Weinberg equilibrium (cases) P < 10 '°.
Study sample sizes varied between 270 and 8,000 individuals (Supplementary Table
1, tab 1). The number of SNPs per study after quality control varied between 290,000
and 780,000. On average, the quality control processes excluded 11 individuals per
study (with a range of 057 individuals) and 20,000 SNPs per study (with a range of
2,000-180,000 SNPs). These exclusions suggest that while previous QC was
sufficient in the sample dimension, tighter QC should have been applied in the SNP
dimension (details below).

After quality control, the GWAS datasets together comprised 49,441 individuals and,
for the next steps of the ‘genetic quality control’ analysis, a set of 21,681 SNPs
common to all platforms and successfully genotyped in each GWAS sample was
extracted. These SNPs were then further pruned to remove LD (leaving no pairs with
r* > 0.05) and lower frequency SNPs (minor allele frequency < 0.05), leaving 17,385
SNPs suitable for robust relatedness testing and population structure analysis (see
below).

Imputation of untyped SNPs was performed within each study in batches of 300
individuals. These batches were randomly drawn in order to keep the same case-
control ratio as in the total sample from that study. We used Beagle 3.1°. Imputation
was performed with CEU+TSI HapMap phase 3 data (UCSC hgl18/NCBI 36) using a
chunk size of 10Mb with 410 phased haplotypes comprising 1,252,901 SNPs, using
default parameters. A was carefully monitored before and after imputation.



Genetic quality control included relatedness testing and principal components
analyses based on 17,385 LD independent SNPs, present on all platforms in this
study. Relatedness testing was done with PLINK®, reporting pairs with genome
identity (pi-hat) > 0.9 as ‘identical samples’ and with pi-hat > 0.2 as being closely
related. After random shuffling, one individual from each related pair was excluded
from downstream analysis. From groups with multiple related pairs (for example, a
family), only one individual was kept.

iii. Principal component analysis

Principal component estimation was done with the same collection of SNPs on the
non-related subset of individuals. We estimated the first 20 principal components and
tested each of them for phenotype association (using logistic regression with study
indicator variables included as covariates) and evaluated their impact on the genome-
wide test statistics using A (the genomic control inflation factor based on the median
¥’ after genome-wide association of the specified principal component. Based on this
we decided which principal components to include (e.g.
1,2,3,4,5,6,7,8,9,12,13,14,18,19 and 20 for IBD) for downstream analysis as
associated covariates (Supplementary Figure 1).

iv. Association analysis

A genome-wide association analyses was carried out for Crohn’s Disease (CD),
Ulcerative Colitis (UC) and all inflammatory bowel disease (IBD). The CD and UC
scans used only the CD and UC cohorts, and the IBD scan used all cohorts with
duplicates cross CD and UC cohorts removed (as described above). The CD scan had
a total of 5956 QC+ cases and 14927 QC+ controls, the UC scan had 6968 cases and
20464 controls, and the IBD scan had 12882 cases and 21770 controls.

Association testing was carried out in PLINK, using the dosage data from the
imputation and using 10, 7, 15 principal components for CD, UC, IBD respectively as
covariates, chosen as described above from the first 20 principal components. The
CD, UC and IBD scans had genomic inflation (Agc) values of 1.137, 1.129, and 1.169
respectively (Supplementary Figure 2).

1b. Immunochip data and analysis

i. Description of immunochip

The Immunochip is a custom Illumina Infinium chip comprising 196,524 SNPs and
small indels selected primarily based on GWAS analysis of 12 autoimmune and
inflammatory diseases. The chip has two purposes: fine mapping of 289 established
associations corresponding to 187 distinct loci, and deep replication of suggestive, but
not yet proven, associations. Fine-mapping regions were defined as 0.2cM centered
on GWAS hit SNPs, and all SNPs and short indels in these regions from the 1000
Genomes Project low coverage pilot CEU samples’, as well as variants discovered in
resequencing experiments conducted by groups collaborating in the chip design were
selected for inclusion’. Replication of autoimmune and inflammatory GWAS
(including Crohn’s disease and ulcerative colitis) contributed the bulk of the
remaining SNP lists. Approximately 25,000 SNPs were included as replication of



unrelated diseases as part of the WTCCC?2 project, which serve as useful null SNPs
for these analyses. In total, approximately 240,000 SNPs were selected for inclusion,
with an assay design success rate of ~80%.

ii. Cohorts, samples and genotyping

Sample collections from 15 countries were genotyped using the immunochip in 11
different genotyping centers (Supplementary Table 1, tab 2). Genotyping was
performed in 20 batches, with each center performing between one and three batches.
A total of 60,828 samples were genotyped on the immunochip, including 20,076 CD
cases, 15,307 UC cases and 25,445 controls. These numbers include many samples
that were also present in the GWAS cohorts, which are to be used for fine mapping
and not for locus discovery. Samples with a mean intensity outside a 95% confidence
interval were removed.

iii. Genotype calling and QC

Because many of the variants on Immunochip do not meet the manufacturer’s quality
standards set for GWAS products, rigorous QC was essential. Furthermore, because
samples with poor quality DNA or with other genome-wide problems can adversely
affect the genotype calls at high quality samples, a first stage of “coarse” QC was
performed on genotypes called using Illumina’s GenomeStudio program. Samples
with >5% missing data, genome-wide heterozygosity outside a 95% confidence
interval in each batch, samples of non-European ancestry (see below, Supplementary
Figure 3) or with abnormal mean intensity values were removed from further analysis.

Normalized intensities for all remaining samples in all batches were then centrally
called using the optiCall clustering program’ version 0.3.0 with HWE blanking
disabled and no-call cutoff set to 0.7. Duplicate and related samples (PI HAT > 0.1)
were identified using the pairwise IBD calculator in PLINK applied to a set of SNPs
in linkage equilibrium (also used for PCA, see below for details). The duplicate or
relative sample with more missing data was removed. A set of 692 SNPs present on
both the immunochip and all four GWAS chips were also used to remove
immunochip samples that were also present in the GWAS. Samples without a
phenotype definition of Crohn’s disease, ulcerative colitis or healthy control were
removed. Finally, samples with > 2% missing data in this improved dataset were
removed.

SNP QC was performed on the sample-clean dataset described above, and SNPs with
>2% missing data or HWE p-value < 10" in controls were removed. To further
ensure the quality of genotype calls in our analysis we performed 3-fold manual
inspection® of 3,356 variants, including those with meta analysis p<10~ which
fulfilled at least one of the following criteria: (a) Cochran heterogeneity p < 0.01
between GWAS and Immunochip (N=871), (b) lie outside fine-mapping regions
known to be associated with immune-mediated disease (N=797), (c) are one of the 3
most significantly associated SNPs in a region (N=851), (d) any SNP with p < 5x10™®
which did not fit those criteria (N=195), (¢) random SNPs as a comparator (N=642).
1015 SNPs were removed due to manual QC, and 29 had genotypes manually
adjusted (blind to phenotype and association statistics) to correct “recoverable errors”.



iv. Principal component analysis
As with the GWAS data, principal component analysis was used to identify ethnic
outliers, and to generate covariates to control for population stratification.

To identify outliers on the continental scale we used a reference set consisting of 662
HapMap founder samples genotyped on the Illumina Human1M, the Affymetrix
Human SNP Array 6.0, and the [llumina Omni2.5 for the HapMap3 and 1000
Genomes Projects. This reference set has a total of 3,268,731 SNPs, of which 83,689
are present on the Immunochip. PLINK was used to LD prune the data such that no
pair of SNPs had r* > 0.2, and to remove potentially problematic GC/AT SNPs, SNPs
within known high LD regions’ and SNPs with MAF < 5%. We projected the
Immunochip samples on the principal component axes generated using these 17,891
SNPs from the 662 reference samples using the R package snpMatrix'’. All samples
that did not cluster with the European samples were excluded (Supplementary Figure
3).

To resolve within-Europe relationships, we performed PCA within the remaining
Immunochip samples. LD pruning was performed within European controls (this was
performed three times, to properly break up the LD in fine-mapping regions), and
SNPs present in high LD regions or with MAF < 5% were removed, leaving a total of
19,111 SNPs. Principal component axes were generated within the controls, and
projected onto the cases to generate principal components for all samples. The first
four principal component axes seemed to capture significant population structure
(Supplementary Figure 3), and addition of components beyond the fourth as
association covariates in a subset of the Immunochip data did not further reduce the
genomic inflation factor.

v. Association analysis

An Immunochip-wide association analyses was carried out for Crohn’s Disease (CD),
Ulcerative Colitis (UC) and all inflammatory bowel disease (IBD). The CD, UC and
IBD scans used the entire control dataset. The CD scan had a total of 14,763 QC+
cases, the UC scan had 10,920 cases, the IBD scan had 25,683 cases, and all scans
used the 15,977 QC+ controls.

Association tests were performed using additive logistic regression in PLINK
conditioned on the first four principal components (see above). Test statistic inflation
was computed from a set of 3120 SNPs chosen based on GWAS of schizophrenia,
psychosis and reading/mathematics ability. Genomic inflation factors were relatively
low, given the large sample size and presence of polygenic risk: Agc cp = 1.353,
Acc uc = 1.154, Agc 1Bp = 1.234 (Supplementary Figure 4). This residual inflation
likely reflects additional polygenic risk showing weak association in our large sample
size, as indicated by very low values of Ao00, the equivalent inflation factor for a
study with 1000 cases and 1000 controls: CD=1.023, UC=1.012, IBD=1.012.

For comparison, we also performed an association test on all IBD samples using the
Cochran-Mantel-Haenszel method stratified by country of origin of the samples. This
is one of the methods used to analyze standard GWAS replication, where PCs are
usually not available. The genomic inflation value for the IBD all analysis was



Acc mp = 2.00, showing that without the genome-wide SNP data on the Immunochip
this replication analysis would have shown severe inflation.

1c. GWAS/Immunochip replication meta-analysis

A combined analysis was performed using both the GWAS and the Immunochip
association results comprising 20,700 Crohn’s disease, 17,865 ulcerative colitis cases
and 37,747 healthy controls.

i. Analysis of primary signals

All SNPs in GWAS association results with p < 0.01 in the CD, UC or IBD scans
were selected for replication in the Immunochip dataset. A fixed-effect meta-analysis
was performed using odds ratios and standard errors from the GWAS hit and the
Immunochip tag SNP with the highest r* to the GWAS hit. If no Immunochip tag SNP
with r* > 0.4 was available we did carry the signal forward for replication. The
Cochran heterogeneity p-value was also calculated.

SNPs with p < 5 x 10 in any of the three phenotypes in this analysis were combined
into clumps if they had r* > 0.1. SNPs within these clumps were tested for evidence of
association independent of the strongest signal in the clump by calculating an
approximate conditional Z-score

Z;? = Zi — Timit Znit

Where Z; is the Z score of the SNP being tested, Zy;; is the Z score of the strongest
signal in the clump, and iy is the correlation coefficient between the strongest signal
and the SNP being tested. If P(Z;" > 0) < 5 x 10 then this clump is considered to have
a secondary signal, and the SNP with the Z;’ largest in magnitude is recorded as a
secondary signal in this clump. All other SNPs in the clump are then tested for a
tertiary signal independent of the first two, using

Z;" = Zi — Timit Znit — Tirznd Zond

We do not test for additional signals after the third. Theoretically, this could be
extended to an arbitrary number of signals, but the approximation will become less
accurate as additional signals are tested for.

This approach yielded 193 genome-wide significant independent signals of
association. None of these signals had significant heterogeneity of effect size, and all
had their Immunochip intensity cluster plots manually inspected to ensure that they
were well clustered.

ii. Combination of independent signals into loci

The large number of independent signals (193) makes categorizing them into
functionally separate loci problematic. We conventionally define signals as coming
from the same locus if their lead SNPs lie within a certain physical or genetic distance
of each other. However if this physical distance parameter is too large functionally
independent signals that are adjacent by chance may be incorrectly combined.



Conversely, selecting too small a distance parameter could cause variants that act
relatively proximately on the same gene to be split into independent loci.

To test the effect of this distance parameter on classifying signals into loci, we
performed a null simulation. We selected randomly from the PCA SNPs to simulate
null signals, and examine what proportion of signals are incorrectly merged together
for a given distance parameter value. Based on this, we defined loci as 500kb units:
250kb on either side of the hit SNP. This results in between 95% and 99% of null loci
being correctly separated (Supplementary Figure 5).

Each independent signal had a region defined around it, which was 250kb on either
side of the hit SNP, or the extent of LD (defined as the positions of the furthest up-
and-downstream variants with r* > 0.5 to the hit SNP). Overlapping regions were
merged together, providing that they were associated to compatible phenotypes under
the likelihood analysis (see below); i.e. loci were not merged if one was uniquely
associated with CD, and the other uniquely associated with UC. The final merged
regions were defined as loci, with their extents being the maximum extent of their

component signals. A total of 163 independent loci were thus defined (Supplementary
Table 2, tab 1).

1d. Crohn’s disease/Ulcerative colitis likelihood modeling

We used a likelihood modeling approach to classify signals into four categories
according to their relative strength of association to CD and UC. We used a
multinomial logistic regression model with additive log-odds ratio parameters 3¢p and
Buc. The model was fitted to the Immunochip genotypes using the mlogit package in
R.

We fit this model with four sets of parameter constraints:

1. CD-specific model: Buc =0, Bcp fitted by maximum likelihood

2. UC-specific model: Bcp= 0, Puc fitted by maximum likelihood

3. IBD unsaturated (same-effect size) model: Bcp = Puc = Pisp, Pisp fitted by
maximum likelihood

4. IBD saturated (different effect sizes) model: Bcp and Byc both fitted by
maximum likelihood

Note that models 1-3 are all constrained versions (1 d.f.) of model 4 (2 d.f.).

We calculated likelihoods for each model, and performed a likelihood ratio test of
each of models 1-3 against model 4. If the likelihood ratio test had p < 0.05 for all 3
models (the 2 d.f. model is nominally significantly a better fit than any of the 1 d.f.
models), we classified the signal as “saturated” (i.e. associated to both CD and UC,
but with evidence of different effect sizes). Otherwise, we classified the signal
according to which of the first three models had the largest likelihood (Supplementary
Table 2, tab 2). Note that being classified as IBD unsaturated should be interpreted as
“associated to both CD and UC, without significance evidence of different effect
sizes”.



In Table 1, the “IBD” section contains all loci where the main signal was classified as
IBD unsaturated or IBD saturated. An exception was made for the CD associations at
PTPN22 and NOD2, where the correct model was “IBD saturated”, as there were
significant UC associations that went in the opposite direction to the CD effect.

Even within these classifications there is a significant variation in the balance of CD
and UC effect sizes (Supplementary Figure 6). To capture this we also used polar-
transformed log odds ratios as a continuous measure of CD vs UC effect size balance.
This is defined as 6 = atan2(log(ORcp), log(ORyc)). Large values of 0 correspond to
associations with a stronger UC component, smaller values correspond to a stronger
CD component.

1e. Comparison of this locus list to previous CD and UC lists

Because this study has access to raw genotype data from both CD and UC for the first
time, it has allowed us to clarify several aspects of the 99 previously reported
associations:

* While previously suspected, we have confirmed that the associations in the
MHC are distinct for CD & UC (Supplementary Table 2, tab 2), and therefore
should be split into two phenotype specific associations, rather than a single
IBD locus.

* Conversely our improved imputation has re-localized the CD association
previously reported as VAMP3 to be the same effect as the adjacent previous
UC association to TNFRSF9, making this a single IBD locus.

* Two previously independent associations on chromosome 2 near 102Mb (one
CD, one UC) have both been shown to be IBD, and accordingly have been
merged into independent effects in a single IBD locus. Similarly, a previous
CD SNP (chromosome 2 near 198Mb), which is now associated to UC as well,
was incorporated into a new nearby UC locus.

* Five previous associations (Chr2@198Mb, Chr5@36Mb, Chr6@3Mb,
Chr6@44Mb, Chrl13@42Mb) are no longer genome-wide significant. In four
cases, our improved PCA-corrected analysis is >2 orders of magnitude less
significant than the previous country-stratified analysis, suggesting that these
associations may have been driven in part by uncorrected population structure.
In the final instance the key SNP failed Immunochip design.

Thus, from 99 previously reported loci, one was split, three were merged and five
were lost, leaving 92 established and 71 novel loci. This highlights both the overall
robustness of our previous analyses as well as potential pitfalls in small-scale
replication genotyping, for which correction for population stratification is difficult.

We also compared the total phenotypic variance of CD and UC explained by our loci
compared to previously published estimates. In ulcerative colitis we improved from
4.1% of phenotypic variance explained by known loci to 7.5% explained by our 193
signals. For Crohn’s disease we improved from 8.2% to 13.6%. Two additional
comments are necessary: first, we have decided here to report phenotypic variance
explained, rather than heritability, because of recent publications suggesting that it is
challenging to accurately estimate narrow sense heritability in a way compared to our
variance explained calculations. Second, the odds ratios estimated in this study are
smaller than previous estimates for several key loci in CD, including NOD2, IL23R



and ATG16L1. This difference was not explained by stratification or differential
ancestry, but because our new odds ratios are estimated in replication samples in this
project, they may reflect less severe disease than the samples previously collected for
GWAS.

1f. Epistasis analysis in IBD, UC and CD datasets

In order to search for statistical interactions between the most strongly associated
SNPs from each of the identified genome-wide significant loci, we used logistic
regression on an allele dosage model in R. For each pair of SNPs, the likelihood ratio
test was employed to calculate a P value of the interaction term. This analysis was
performed in the Immunochip dataset (for cases subdivided into IBD, UC and CD,
and the complete control dataset) and the first four principal components were added
as covariates. The analyses of the CD and UC subsets were inconclusive. The results
for the analysis with IBD showed one suggestive result between SNPs near SLC7A10
(rs17694108) and IL2RA (rs12722515) with P value=3.26x10”. However, a physical
interaction was not supported by the protein interaction analysis described in this
paper. Although, the proteins do seem to act downstream of one another (connected
through physical interactions with ICAM1 and SLC3A2).
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2. IBD genetics in the context of autoimmunity and
infection

2a. Annotation of associations to other phenotypes

The IBD locus list was annotated with the NHGRI GWAS catalogue''. All
associations with p < 5x10°® to any disease or primary phenotype were included. For
each IBD locus we annotated all phenotypes that had at least one associated SNP
within the IBD region. We also checked whether the hit SNP in the NHGRI catalogue
was the same as, or in high LD with (r* > 0.8) the IBD hit SNP, and when this was the
case the direction of association was checked to highlight cases where IBD went in to
opposite direction to the other association (Supplementary Table 2, tab 3).

2b. Analysis of primary immunodeficiency (PID), complex
autoimmune and immune-mediated disease (IMD) and IBD

To place the IBD loci in the context of other immune-related diseases, we generated
lists of associations with other immune-related disease. We included complex
autoimmune and immune-mediated and diseases (IMD), and autosomal dominant or
recessive primary immunodeficiencies (PID).

Autosomal dominant and recessive genes identified as causing PID were taken
from'?. Genes that lie within 250kb of each other were merged together into regions,
giving 135 genes across 121 independent regions.

The associated regions for the IMD list were taken from the NHGRI GWAS
catalogue, and included the following diseases: Primary sclerosing cholangitis,
primary biliary cirrhosis, rheumatoid arthritis, type 1 diabetes, multiple sclerosis,
celiac disease, atopic dermatitis, psoriasis, ankylosing spondylitis, asthma and
systemic lupus erythematosus. All SNPs in the catalogue with p < 5 x 10™ were
included. Each SNP was given a region on 250kb on either side, and overlapping
regions were merged together into loci. This generated a total of 156 independent
IMD loci.

We assessed the overlap (Figure 2C, Supplementary Table 4) in regions in the three
lists (IBD, PID and IMD). We calculated the statistical significance of the enrichment
in overlaps using the method described below (Section 4a iv).

GO terms and pathways that were enriched or depleted in the IBD-unique set relative

to the PID-unique and IMD-unique sets were detected using the method described
below in section 4a.
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3. Prioritizing causal genes within IBD loci

We performed a number of analyses designed to identify candidate genes within IBD
loci (Supplementary Table 1, tab 4).

3a. GRAIL

GRAIL (Gene Relationships Across Implicated Loci)' is a network connectivity tool
that uses text mining to calculate a network distance between genes in different
implicated loci. Each gene is measured for enrichment of connectivity to genes in
other associated loci measured, and a p-value is calculated.

We used the online GRAIL web tool to perform this analysis, using association region
definitions from Table 1. To reduce noise we removed associations with the HLA,
and replaced regions around 4 well-established genes (NOD2, IL23R, ATG16L1 and
PTPN22) with the gene itself. We searched only among PubMed articles pre-2006 in
order to avoid bias from the (now very large) literature that discusses or follows up
the results of previous genome-wide association studies in IBD. We selected all genes
with p <0.05 as GRAIL implicated loci.

3b. DAPPLE

DAPPLE (Disease Association Protein-Protein Link Evaluator) is a network
connectivity tool that uses protein-protein interactions (PPIs)'*. Each gene is
measured for enrichment in either direct or indirect (i.e. via other proteins)
interactions with genes in other loci, and an empirical p-value is calculated by
permutation.

We used the DAPPLE web tool to perform this analysis using association region
definitions from Table 1. As with GRAIL, to reduce noise we removed associations
with the HLA, and fixed the same 4 well-established genes as causal. We selected all
genes with p < 0.05 as DAPPLE implicated loci.

3c. eQTLs

We identified genes whose expression showed evidence of being correlated with our
associated hit SNPs, i.e. for which the IBD hit SNP is an expression quantitative trait
locus (eQTL) for the gene.

We looked at three different sources of eQTLs.

1. The University of Chicago eQTL database (http://eqtl.uchicago.edu/cgi-
bin/gbrowse/eqtl), containing eQTLs collected from a range of studies. We
excluded eQTLs from studies of non-European individuals, where the patterns
of LD may differ from our study. Data track kindly provided by Jacob Degner.

2. The Dixon et al eQTL dataset (http://www.sph.umich.edu/csg/liang/asthma/),
containing eQTLs inferred from 400 lymphoblastoid cell lines of asthmatic
children". A p-value cut-off of p < 10™ was applied to the dataset.
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3. The Merck Research Laboratories eQTL dataset, containing eQTLs of four
tissues from 1000 morbidly obese patients'®. A p-value cut-off of p < 10~ was
applied to the dataset. Data kindly provided by Cong Li.

In order to take a broad view of the relationship between IBD risk and gene
expression, we included data from both immune and non-immune tissue datasets.
However, we recorded the tissue of discovery for each eQTL (Supplementary Table
2). The majority of eQTLs (25/37) were found in immune-related tissues
(Ilymphoblastoid or monocyte).

We identified cases where the e¢QTL was the same as the IBD hit SNP, or where the
eQTL was in LD with the IBD hit SNP (r* > 0.8). We selected all genes regulated by
these eQTLs as eQTL implicated loci.

3d. Coding SNPs
We performed functional annotation to identify genes for which an IBD hit SNP was
correlated with an amino-acid changing variant.

Functional annotation was performed using functionGVS
(http://snp.gs.washington.edu/SeattleSeqAnnotation134/), using dbSNP build 134. A
variant was annotated as a coding SNP if it was classified as “missense” or
“nonsense”, or if it was in LD (r* > 0.8) with a SNP with that classification. The genes
in which these missense variants lie were included as cSNP implicated genes.

3e. Co-expression network analysis
Genes in IBD loci implicated by the inflammatory adipose network described in
section 5 were included as co-expression network implicated genes.
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4. Functional analysis across IBD loci

4a. GO term and canonical pathway analysis

We performed various analyses looking at enrichment or depletion of functional terms
(including GO terms and canonical pathways) in IBD loci as a whole, within subsets,
or compared to other quantitative variables.

i. A note on bias within the Immunochip

The Immunochip was constructed using variant lists submitted by immune-related
disease association consortia. We may therefore expect there to be a bias towards
discovering loci that are associated to both IBD and other immune-related diseases.
Such a bias could cause an artificial inflation in enrichment of immune-related GO
terms. To investigate this possibility, we applied our GO enrichment analysis
(described below) to two non-overlapping subsets of our loci: (i) the 92 loci described
in our previous meta-analyses, and (ii) the 71 newly discovered loci. If our analysis
for identifying new IBD loci were biased (via the Immunochip design) toward loci
shared across autoimmune diseases we would expect larger enrichment odds ratios in
set (i1) compared to (i). Supplementary Figure 8 shows that in fact, the opposite is
true: our previous loci are, on average, slightly more strongly enriched than our new
loci (p = 2.2x10™). This difference might suggest that the strongest IBD loci (i.e.
those already known) play a more central role in key immune functions than our new
discoveries.

This lack of observable bias, while initially surprising, can largely be explained by
our experimental design, and the specifics of the SNP selection process for the
Immunochip. As part of that design we included the top 2000 most associated SNPs
each from the earlier CD and UC GWAS meta-analyses regardless of function or
association with other phenotype (corresponding to p < 0.0009 for CD and p < 0.0004
for UC). This subset of SNPs therefore represents a functionally unbiased, genome-
wide replication set that includes 147 (55 new, 92 known) of our 163 reported loci.
Therefore the non-IBD immune disease focused part of the Immunochip contributed
to only 16 of our loci — a number too small to bias our analyses as shown above.

ii. Description of enrichment methodology

We wish to assess the enrichment of a particular functional term (e.g. a GO term) in
causal IBD genes. Given a list of causal genes, we could easily calculate an
enrichment odds ratio A; of a functional term 7 in IBD genes relative to the genome as
a whole, and perform a statistical test of Ai = 1 vs A; > 1. However, we do not know
the causal variant for most IBD regions, and most IBD regions contain multiple
genes. To compensate for this, we use an extension of the standard odds ratio method
that takes into account the presence of non-causal genes.

Assume that we have M loci, designated by j = (1, ..., M) each of which contains N,
genes. For each associated locus j we set an indicator variable 6;to 1 if the functional
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term i is present in locus j, and 0 otherwise. We also calculate a genome-wide
frequency for term f; that is equal to the proportion of all genes that contain the term i.

We calculate the g;, the frequency of term 7 in causal genes, given an enrichment odds
ratio A

_ 1-f\"!
gi_(1+ Aifi)

We then assume that all other genes have a frequency of the term f. Assuming that
there is one exactly one causal gene in the region, the log likelihood L; is given by

L; = Z%‘ZOQ (1—@Q—f)N(1—g))+ Z(l —8ij)log (1 — f)N1 (1 - g:))

J

We fit the parameter A; by maximum likelihood using the Nelder-Mead, implemented
in the statistical package R. We assess the significance of the parameter A; by
performing a likelihood ratio test of of i =1 vs A; = 1.

iii. Extension to arbitrary predictors
We can extend the method above to include arbitrary predictors X = {xj}, by
extending the definition of the g; to a generalized logistic model

-1
gi = (1 +2 flfz exp(—fo — 5X)>
We keep the enrichment odds ratio (in this case as Ai = exp(Po) ) but also include
terms for other predictors . The predictors X can be discrete (e.g. x =0 for UC, x =1
for CD), or continuous (e.g. the polar-transformed odds ratio 6 described above). The
model is fitted by maximum likelihood in the same way as the simple enrichment
model, and likelihood ratio tests can be used to assess the significances of the
parameters.

iv. Extension to enrichment of interval overlap

We can extend the above methodology to assess the enrichment in overlap between
sets of genomic intervals. Assuming that our loci have lengths ;, our genomic
intervals have lengths Iy, and the total length of the genome is I, We can use the
equations in sections 4a.ii 4a.iii above by setting

fi= %Z(lk —l)

9 K

This extension enables us to evaluate the significance of overlap between our IBD
loci and GWAS associations (Figure 2A).
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v. Terms, pathways and examined
We examined 15,526 human GO terms dated 28/02/2012. We also used canonical
pathways (186 taken from KEGG, 430 taken from Reactome, and 217 from Biocarta).

When testing for enrichment we considered testing all genes in the 163 loci, or just
those genes prioritized by at least one of the methods described in section 2.
Supplementary Figure 10 shows that the enrichments were substantially stronger in
the prioritized list, which demonstrates the validity of our prioritization strategies and
highlights the consistency between orthogonal functional annotations. Supplementary
Figure 11 shows that the estimated odds ratios are slightly higher using this approach
than using the entire gene list, suggesting this using these prioritized genes introduces
a slight bias towards the detection of well-studied pathways, but this bias is relatively
small. We therefore used only the prioritized list for enrichments discussed in the text.

4b. Immune cell enrichment analysis

To assess whether genes near risk alleles are specifically expressed in individual
immune cell types, we used a separately published approach'’. Here we present a
summary of the approach.

We used two high quality gene expression datasets, a mouse dataset curated by the
Immunological Genome Projects (ImmGen) and a human dataset curated by the
Genomics Institute of the Novartis Research Foundation (GNF). We applied standard
quality control and quantile-normalization to both datasets'®. The InmGen dataset
consists of 223 mouse immune cell types from different lineages at multiple
developmental stages, sorted by FACS and assayed in at least triplicate'’. We mapped
the mouse genes to 14,624 human homologous genes within the hg18/build36 of the
human reference genome. The GNF dataset consists of 17,581 genes from 79 diverse
human tissue types, including peripheral blood cells, neurological tissues, and tissues
from visceral organs; each cell type was measured in duplicates®’.

We use SNPs from genome-wide association studies and cell-specific expression
profiles to identify candidate pathogenic cell types in three major steps:

1. In order to assess cell-specific expression, we first divide the absolute
expression of each gene in each cell type by the Euclidean norm of the vector
of the gene’s expression values across all cell types. To make this specificity
score non-parametric, we rank the specificity of all genes in each cell type,
and then convert each rank to a cell-specificity percentile score between 0
(most specific) and 1 (least specific).

2. We calculate a cell-specificity score for each SNP that is associated with a
given disease. To do so, we first identify all genes that are implicated by a
given SNP by defining a region containing the disease-associated SNP and all
SNPs in LD using the same approach as GRAIL and DAPPLE (see above).
All genes that overlap with this region are considered implicated by the SNP.
In each cell type, we score each SNP based on the percentile of the most
specifically expressed gene near that SNP. As the number of genes in LD with
each SNP is variable, this locus score is adjusted for multiple hypothesis
testing. Under the null, these “locus p scores” should be uniformly distributed
between 0 and 1.
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3. Finally, to score each cell type we take the log average of the locus p scores of
all the disease-associated SNPs. To assess significance of this score, we match
each set of disease-associated SNPs with sets of random SNPs from the
genome-wide catalog that are 1) not known to be associated with diseases, 2)
matched for the total number of SNPs, and 3) matched for the number of
genes in LD with each SNP. We report an empirical p-value that equals the
proportion of simulated p-values achieving higher significance than the
analytical p-value.

Data used in this analysis are available from ImmGen
(http://www.immgen.org/suggestions/dataRequest.do) and Novartis GNF
(http://biogps.org/downloads/).

4c. Selection analysis

To test selection on IBD loci, we used data, provided by Joe Pickrell, generated using
the TreeMix method developed by Pickrell and Pritchard*' They constructed
population trees from the Human Genetic Diversity Panel data, and produced a per-
variant score that measures the extent to which population allele frequencies at that
site are over-dispersed relative to this tree. The most over-dispersed sites are likely to
have been subjected to directional (positive or negative) selection, whereas those that
match the tree most closely are likely to have been subjected to balancing selection.

We picked the best tag SNP for each of our associated variants (picking only the UC
associated variant from the HLLA), and extracted the scores for these variants. Because
the score is confounded with allele frequency, we calculated empirical p-values for
each variant as follows: pick all variants with an allele frequency within 1 percentage
point of the hit variant’s allele frequency, and measure the proportion of variants with
a score greater than the score of the hit variant. We calculated p-values for directional
selection (the proportion of variants with a scores higher than the hit variant), and p-
values for balancing selection (the proportion with scores lower than the hit variant),
as well as two-tailed p-values.

For set-based tests of selection, we used a Fisher’s method combination of the
empirical p-values to generate a set-wise empirical p-value.

In order to assess whether extent or direction of selection was correlated with specific
functions, we used the GO term enrichment method described in section 4a. We
converted our selection p-values to Z scores using an inverse normal transformation,
and tested for association between these scores and GO terms.
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5. Identifying causal directions of regulation among
IBD loci: Co-expression module and causal network
analyses

5a. Gene expression datasets

We explored expression in several tissues from a cohort which contained 950 patients
who underwent Roux-en-Y gastric bypass surgery at Massachusetts General Hospital
(MGH)'®. Liver, subcutaneous adipose and omental adipose tissues were collected
from each participant. Genomic DNA was isolated from liver tissues, and total RNA
was extracted from each of the tissue types. Each RNA sample was profiled on a
custom Agilent array with 39,280 oligonucleotide probes targeting transcripts
representing 34,266 known and predicted genes, including high-confidence
noncoding RNA sequences. Each DNA sample was genotyped on the [llumina 650Y
BeadChip array. Phasing was performed using BEAGLE with default parameters,
and imputation was performed using minimac with default parameters on all markers
in the February 2012 release of 1,000 Genomes. Other publicly available expression
datasets that were used only for co-expression network construction included blood
and adipose tissue from 1,675 Icelandic individuals®, and liver tissue from 427
samples™.

5b. eSNP Analysis

The top IBD-associated markers, as reported in Table 1, were each tested for cis and
trans eSNP association in the MGH liver, subcutaneous adipose, and omental adipose
datasets. Significant eSNPs were identified using a method previously described™.
The cis eQTL for a given marker was defined as the gene with associated expression
levels whose transcription start or stop site was located within 1 megabase (Mb) of
the genetic polymorphism. All other associations were considered trans. SNP
associations were identified using linear regression and the Kruskal-Wallis test.
Based on the number of potential cis SNP-gene pairs that met the proximity criteria,
Bonferroni correction for multiple testing was applied to the association P-values.
Within the 163 IBD-associated loci, cis eSNPs with a corrected P-value less than 0.05
were reported as significant. All identified cis eSNPs genome-wide were then tested
for trans eQTL associations at 10% FDR for a significance value threshold of P < 10
>. Where SNP associations to the same trait were identified in high LD with each
other, the SNP with the most significant p-value was reported.

5c. Omental Adipose Bayesian Network Construction

Using gene expression data from the omental adipose tissue set, we applied a method
similar to one previously described for Bayesian network construction®*. Given a set
of nodes defined by the genes present in the dataset, 1000 independent simulations
were employed to identify a range of plausible network structures, which were then
combined to obtain a consensus network with confidence values on each directed
edge. Each simulation started with a different randomly generated Bayesian network
seed. Three types of prior information were used in the edge seeding of each
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simulation. First, protein-protein interaction (PPI) information was retrieved from
public (BIND, BioGRID, HPRD, MINT, Reactome, DIP, and IntAct) and commercial
(Ingenuity, Proteome, MetaBase, and NetPro) databases, providing scale-free
structural priors. Second, transcription factor (TF) binding data was also included in
the network seeding. In addition to directly supporting causal relationships between
TF’s and their target genes, these data were used to identify PPI subnetworks in which
at least half of the genes’ expression was modulated by a given transcription factor.
All the genes in such a subnetwork were then considered to be child nodes of the
corresponding TF. Third, eQTL signatures identified in the omental adipose data were
used in several ways in seeding the simulations>*. For a given genetic marker with
both a cis-acting and a trans-acting eQTL, the cis-acting eQTL gene was defined as a
parent of trans-acting eQTL gene with a prior probability of 1. Genes were then tested
for eQTL pleiotropy to identify additional causal relationships that were not
marginally significant™. Finally, for gene pairs not already addressed by the above
information sources, cis-acting and trans-acting eQTLs at a relaxed significance
threshold were used to assign fractional prior probabilities.

For model fitting, gene expression was discretized into one of three possible states
(downregulated, upregulated, or no change) guided by modified k-means clustering®.
In each simulation, up to N iterations of MCMC were run until the network’s
Bayesian Information Criterion (BIC) score was maximized, which typically occurred
at roughly N iterations, where N is the number of nodes in the network. In each
iteration, a randomly chosen edge was added, removed, or flipped; if the change
improved the network’s fit to the data, then it was kept. After completing the
simulations, we then determined the consensus network by retaining only those edges
represented in at least 30% of the 1,000 reconstructed networks. Cycles were
eliminated by removing the minimal number of edges with the lowest simulation
support in order to satisfy the acyclic property of Bayesian networks. Lastly, genes
that were parents of a large number of downstream nodes, and whose simulated
changes in expression level modulated expression in many other nodes (as measured
against background variation across all genes in the network) were labeled as causal
regulators® (and Zhang B et al., 2012, Gene Network Remodeling in Alzheimer's
Disease, under review).

5d. Enrichment in Co-expression Network Modules

A previously described algorithm was employed to construct weighted gene co-
expression analysis (WCGNA) networks on 15 expression datasets®®. We first
constructed a matrix of Pearson correlations between all gene expression pairs. This
was then converted into a weighted adjacency matrix using the power function

B
! (x) - , where parameter § was minimized such that the weighted adjacency
matrix was approximately scale-free. We used a model fitting index proposed by
Zhang, et al** to determine how well a network had a scale-free topology. The
maximum value of this index, which describes a perfectly scale-free network, is 1,
and 0.8 was the minimum fit required for our final co-expression networks. To
identify modules of highly co-regulated genes within a these networks, we used
average linkage hierarchical clustering to group genes based on the topological
overlap of their connectivity, followed by a dynamic cut-tree algorithm to cut
clustering dendrogram branches into non-overlapping gene modules®’. This, in effect,
defines groups of genes with high intra-connectivity, relative to their background
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connectivity to other genes in the network. In the MGH omental adipose co-
expression network, we identified 16 modules (Supp table).

We then screened all 211 modules from co-expression networks for enrichment of
IBD-associated genes. Fold-enrichment was calculated as ((A/B)/(C/D)), where A is
the number of IBD-associated genes in the module of interest, B is the number of
IBD-associated genes, C is the total number of genes in the module of interest, and D
is the total number of genes in the full co-expression network. Hypergeometric tests
were used to generate exact estimates of the statistical significance of each module’s
enrichment (Supp table). The module that was most significantly enriched for IBD-
associated genes was generated from the omental adipose co-expression network and
is most correlated with macrophage gene expression. The portion of the Bayesian
network defined by the genes contained in this module and their connections was
labeled as the IBD subnetwork.

To investigate the relationship between IBD pathogenesis and response to
Mycobacterium tuberculosis (M.Tb) infection, we constructed a weighted co-
expression network from gene expression data generated on dendritic cells that had
been isolated from 70 individuals and subsequently infected with M.Tb*®. Of the 12
modules identified in the M. Tb network (Supplementary Figure 9C), 5 significantly
overlapped with the IBD subnetwork and were enriched for the GO pathways, such as
chemotaxis (p = 1.6x10*) highlighted in (Supplementary Figure 9E).

5e. Integrative Network Reconstruction

We have published extensively on the integrative network reconstruction approach
used to construct the human omental adipose network, including providing extensive
details of the algorithm and implementation used for the constructions™*, extensive
simulations to demonstrate the robustness and the increase in accuracy achieved by
integrating DNA variation and RNA expression (compared to RNA expression alone)
**_and the applications that have demonstrated the utility of the approach with respect
to leadi%gz 9t(3)lr£vel causal genes of disease and the biological context in which they
operate”™ "7 0,

To reconstruct the Bayesian network presented in the manuscript we input gene
expression data and eQTL data (in the form of structure priors as previously
described’' %) into our standard Bayesian network reconstruction process. The
omental gene expression data and cis eQTL data used to construct the networks has
been previously fully described'® and is freely available from the Sage Bionetworks
Synapse tool (https://synapse.sagebase.org/), from the GEO database under the super
series accession number GSE24335, and from the Massachusetts General Hospital at
http://www.samscore.org. Given the underdetermined nature of our system (i.e., there
are many more unknowns than data we have to estimate the unknowns uniquely), we
protect against overfitting and ensure robustness by generating thousands of network
structures from a Monte Carlo Markov Chain (MCMC) process using different
random seed numbers (thousands of random seed numbers are generated by a master
process, then each slave process starts an MCMC process using one of the generated
seed numbers). Once the thousands of network structures have been generated
(typically 1,000 to 10,000 structures are generated; in the present case 1,000 network
structures were generated), common features are extracted to derive a consensus
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network. That is, edges that are consistent across 30% or greater network structures
from the thousands of structures generated are used to derive the final network
structure. We have demonstrated previously that this type of consensus network is
robust and highly consistent (i.e., multiple repeats of this process generally lead to the
same network structure)**>. Because the consensus network may contain loops after
this consensus process, which is prohibited in Bayesian networks, we ensure the final
network is a directed acyclic graph by removing edges if and only if 1) the edge was
involved in a loop, and 2) the edge was the most weakly supported of all edges
making up the loop.

The software, RIMBANet, for constructing the Bayesian networks is freely available
at: http://www.mssm.edu/research/institutes/genomics-institute/rimbanet and comes
complete with instructions on how to run the software and specific examples with
step-by-step constructions on reproducing previously published results with this
software.
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Supplementary Tables
Note: All supplementary tables available as additional supplementary files.

Supplementary Table 1: GWAS & Immunochip samples used in
this study. The first tab shows details of all GWAS samples included in our meta-
analysis, including the number of unique controls, since several CD and UC datasets
from the same group used overlapping controls. The second tab shows details of the
Immunochip samples used, broken down by 11 genotyping centers, and then
nationality within those groups. “Non-overlap” refers to non-overlapping with GWAS
samples from tab 1.

Supplementary Table 2: Complete details of 163 IBD loci. The first tab
is a more complete summary of the loci shown in main text table 1, and shows the
overview of our 163 IBD loci. The second tab contains detailed association statistics,
including disease-specific and platform-specific odds ratios and p-values. The third
tab shows details about overlaps with other disease phenotypes (section 2 of the
methods)**>". The fourth tab shows details about our gene prioritization approaches
(section 3 of the methods).

Supplementary Table 3: Disease overlaps. Details of disease overlaps
with IMD, PID, and MSMD described in section 2 of the methods. The first tab gives
overlap and enrichment statistics broken down by IMD phenotype. The second tab
lists all PIDs with genes that overlap IBD loci. The third tab lists the 8 MSMD loci,
the associated alleles in MSMD and IBD, and their functional effects'>"*>’. The
fourth tab gives details of the overlapping loci between IBD and leprosy, along with
their inferred directions of effect.

Supplementary Table 4: GO term and pathway enrichment. Detailed
enrichment statistics for all GO terms (tab 1) and canonical pathways (tab 2), using
the technique described in section 4a of the methods. All terms with p < 10-4 in the
IBD enrichment analysis are included. Fields of the form NhitsA and p_A show the
number of loci associated with phenotype A that are annotated with this term, and the
statical significance of this enrichment compared to chance. betaAB and p_ AB give
the  statistic (defined in section 4aii) and enrichment p-value of the term in
phenotype A compared to phenotye B. betaAxisA and p_axisA give the { statistic and
enrichment p-value of the term in phenotype A relative to the other two phenotypes.
Thetabeta and p_theta are the f3 statistic and significance of the correlation between 0
(the CD-UC balance defined in section 1d) and the functional term.

Supplementary Table 5: Signals of selection at IBD loci. Selection
statistics for individual SNPs (tab 2) and sets of SNPs (tab 1) calculated from
TreeMix, as well as GO enrichment for selection described in section 4c¢ of the
methods (tab 3).
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Supplementary Table 6: Enrichment scores for genes in IBD loci
within co-expression modules. Fold-enrichment was calculated as
((A/B)/(C/D)), where A is the number of IBD-associated genes in the module of
interest, B is the number of IBD-associated genes, C is the total number of genes in
the module of interest, and D is the total number of genes in the full co-expression
network. Hypergeometric tests were used to generate exact estimates of the statistical
significance of each module’s enrichment
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Supplementary Figures
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Supplementary Figure 1: Global
distribution of IBD GWAS and
Immunochip samples. Numbers of
quality control passing IBD and control
samples from each country participating
in this study. The numbers for the
Immunochip samples (numbers in blue)
only include samples that are not also
present in the GWAS (numbers in red).
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Supplementary Figure 2:
PCA of GWAS data. All
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colored by study. Circles are
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Supplementary Figure 3: QQ plots for GWAS. QQ plots, lambda and lambda 1000 values for the CD, UC and IBD GWAS analyses.

Grey shapes show 95% confidence interval under the null.
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Supplementary Figure 6: From statistical
signals to loci. The x-axis shows varying thresholds
of proximity for two statistically independent signals to
be considered in the same locus. The y-axis shows the
number of loci for a particular threshold, from 193 (the
total number of independent signals) at the left when no
signals are combined to fewer than 50 when even
extremely distant signals 100Mb apart are combined.
The 95% confidence interval from simulations of 193
random signals (grey shaded area) demonstrates that
even choosing random regions yields many within 1Mb
of each other, and half within 10Mb. Our regions (black
line) are often closer than expected by chance, possibly
caused by the physical proximity of functionally related
genes associated to IBD. The red vertical line shows our
chosen threshold of 500kb for merging.
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Supplementary Figure
7: ‘Circus’ plot of
association to other
IMD diseases.

Each radial line represents an
IBD locus, ordered by
genomic position and labeled
around the rim, and each
circular line represents a
phenotype, with all points on a
line colored according to the
phenotype key given. Points
sit at the intersection of a
radial and a circular lines, and
represent sharing of an IBD
locus with a given phenotype.
The location in Table 1 of
each IBD locus is shown by
shapes: triangles for UC-
specific, square for CD-
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Supplementary Figure 8: GO enrichment in
known vs. new loci. The enrichment odds ratios for
GO terms (Supplementary Methods 4a) are plotted in
previously known loci (x-axis) and new loci identified
here (y-axis). In contrast to the possibility that our
immune related GO enrichment is driven by
Immunochip biased discovery, the odds ratios are, on
average, slightly but significantly higher when estimated
in known loci only. This could suggest that loci related
to core biological processes tend to have large effect
sizes, and are therefore more likely to have been
previously discovered. Note that while the effect sizes
are similar in both set of loci, our newly discovered set
allow us to detect significant enrichment for the first
time in many more GO terms (open circles) than was
possible using previous loci (filled circles).
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rs12942547

Supplementary Figure 9: Functional
impact of IBD-associated risk alleles.
STATS3 risk carriers at rs12942547 demonstrate
increased IL12p40 secretion upon pattern-
recognition receptor initiated stimulation. Peripheral
blood monocyte-derived macrophages from healthy
controls were stimulated with Pam3Cys (activates
toll-like receptor 2) (Calbiochem, La Jolla, CA) at
the doses listed. After 24 hours, I[L12p40
concentrations in the supernatant were measured by
ELISA (R&D Systems Inc. Minneapolis, MI, USA).
The IBD risk allele is the A allele, which is
associated, likely via autocrine-mediated cytokine
effects, with increased IL12p40 secretion with PRR-
initiated stimulation compared to the G allele. *, p-
value < 0.05; **, p-value < 0.01.
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Supplementary Figure 10: Relative
enrichment of all and prioritized genes in
IBD loci. Enrichment p-values for GO terms (black
dots) and canonical pathways (red dots) calculated on
all 1438 genes in IBD loci (x-axis) and just the 300
prioritized as described in Supplementary Methods
section 3 (y-axis). Nearly all significantly enriched
terms and pathways are more significant in our
prioritized genes alone (above the dashed x=y line),
demonstrating that the prioritization procedure has
successfully enriched for specific pathways and
functions.
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Supplementary Figure 11: Comparison of
odds ratio estimates for enrichment using
all and prioritized genes in IBD loci. Odds
ratios for GO terms (black dots) and canonical pathways
(red) calculated on all 1438 genes in IBD loci (x-axis)
and just the 300 prioritized as described in
Supplementary Methods section 3 (y-axis). The slight
bias towards higher estimated ORs in prioritized genes
suggests we are more likely to prioritize genes from
well-studied pathways. While this suggests our current
list of prioritized genes is biased away from relevant,
but unknown biology, it does not imply that our
currently highlighted genes are not actually involved in
IBD pathogenesis.
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Supplementary Figure 12: IBD network analysis.
A) Workflow of the Bayesian network-based analysis of newly IBD-
associated genes’ functional relationships. Blue boxes represent data
products guided by evidence for disease association, green boxes
represent results guided by an expression dataset in tuberculosis
(MTB) infection, and red boxes represent analytical and data products
that did not utilize any IBD or MTB datasets. B) Full Bayesian
network constructed from the omental adipose expression dataset.
Genes that are in the IBD subnetwork are highlighted in pink. C)
Gene overlap between the IBD subnetwork and top MTB modules.
Colors other than light purple correspond to modules in the TB-
infected macrophage coexpression network. Square = causal
regulator. Diamond = IBD-associated gene. Triangle = gene
associated with both IBD and a cis eSNP. D) Functionally color-
coded IBD subnetwork, representing genes in the omental
macrophage module and edges in the omental adipose Bayesian
network. Nodes disconnected from the main subnetwork were
removed, with the 465 remaining genes displayed here. Pink circle =
IBD-associated gene. Peach circle = gene associated with both IBD
and a cis eSNP. Green square = causal regulator. Yellow square =
gene that is both IBD-associated and also a causal regulator. E) GO-
pathway color-coded IBD subnetwork. Clockwise, from left: Dark
purple = inflammatory response. Pink = defense response to
bacterium. Turquoise= IgG binding. Green = innate immune response.
Plum =T cell costimulation. Light purple = B cell receptor signaling.
Lime = cytokine-mediated signaling. Yellow = interferon gamma-
mediated signaling. Red = T cell receptor complex. Orange =T cell
activation. Square = causal regulator. Diamond = IBD-associated
gene. Triangle = gene associated with both IBD and a cis eSNP. All
network illustrations are available for download in Cytoscape
(All_network.cys) format.
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Discussion of other pathways highlighted by the 163
loci and subsequent analyses

Ubiquitination and NFxB

Ubiquitination is a mechanism of post-translational modification that can lead to
protein degradation and is implicated in innate immunity, adaptive immunity,
autophagy and NFkB activation. IBD loci are enriched for this process, with 15
containing prioritized ‘ubiquitination-related” genes (p = 8 x 107). These include the
ubiquitin-specific proteases, USP4 and UBE2L3, which are involved in the second
step of ubiquitination that transfers ubiquitin to the active site of a ubiquitin-
conjugating enzyme. TNFAIP3 is UC-predominant and encodes the ubiquitin editing
protein A20 implicated in multiple immune-mediated diseases™. Importantly,
ubiquitination is regarded as a tractable inflammation-related therapeutic target.
NFkB is a master transcriptional regulator of the inflammatory response, and
controller of epithelial integrity and mucosal immune homeostasis in the presence of
gut microflora®®. Ubiquitin has multiple roles in the NFkB pathway, including
processing of NFkB precursors (p105) and 1kB kinase activation and degradation.
NF«B dysregulation has been linked to several autoimmune and inflammatory
conditions, including IBD. In the current study, new associations were identified at
loci encoding several key constituents of NFkB, including REL on chromosome 2
(IBD), RELA on chromosome 11 (CD) and NFKBI itself on chromosome 4 (UC).

Autophagy

Among the autophagy genes associated with IBD, ATG16L1 remains specific to CD.
IRGM and LRRK? are now also associated with UC, but with significantly smaller
effect sizes than those seen in CD. We also observed a novel UC-specific association
with SMURF I, a ubiquitin ligase that was recently identified, through an image based
genome-wide siRNA screen, as an important mediator of selective viral autophagy
and mitophagy®. These findings, together with the recently described UC-association
with a negative regulator of autophagy (DAP)"', extend the role of autophagy to UC.

Th17-cell differentiation: RORC

Genetic studies have implicated genes involved in T-cell differentiation, specifically
in the differentiation of Th1 and Th17 cells, in multiple immune-mediated diseases®.
We identify a locus on chromosome 1g21 harboring RORC (or RORyt), a nuclear
receptor and the master transcriptional regulator of the differentiation of naive CD4+
T cells into IL17-producing Th17 cells®. RORyt has a ligand-binding pocket, so it is
an excellent candidate for pharmacological intervention. Recently, a high-affinity
synthetic ligand specific for both RORyt and RORa was shown to inhibit the
development and function of Th17 cells®*.

Transforming Growth Factor beta (TGFB) signaling
TGFp limits immune responses and is a potent pro-fibrogenic agent, inducing
collagen synthesis in the GI tract®. In this study the TGFp pathway showed the
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greatest enrichment in IBD loci relative to both other immune-mediated diseases
(p=6.7 x 10°) and primary immunodeficiencies (p = 8.5 x 10”). Twelve loci
contained a gene involved in this pathway, and many of these were involved in
production or degradation of TGFp signaling components. In addition to confirming
the SMAD3 (TGFp signaling) association, we report two new associations at SMAD7
and SMURF 1, known promoters of type I TGF-beta receptor ubiquitination. We also
report a novel association near the FURIN gene, a protein responsible for cleaving
and activating the TGF3 complex precursor.

Overlap with colorectal cancer

An important clinical complication in UC is colorectal cancer (CRC). Previous
GWAS studies identified CDHI and RHPN? as risk loci shared between UC and
CRC®. SMAD? is an intracellular antagonist of TGFp signaling and is a known
susceptibility gene for CRC®’. The newly observed association between SMAD7 and
UC increases the genetic contribution to this shared risk.
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